Abstract

The Lobatto discrete variable representation (LDVR) proposed by Manoloupolos and Wyatt (1988) has unique features but has not been generally applied in the field of chemical dynamics. Instead, it has popular application in solving atomic physics problems, in combining with the finite element method (FE-DVR), due to its inherent abilities for treating the Coulomb singularity in spherical coordinates. In this work, an efficient phase optimisation and variable mapping procedure is proposed to improve the grid efficiency of the LDVR/FE-DVR method, which makes it not only be competing with the popular DVR methods, such as the Sinc-DVR, but also keep its advantages for treating with the Coulomb singularity. The method is illustrated by calculations for one-dimensional Coulomb potential, and the vibrational states of one-dimensional Morse potential, two-dimensional Morse potential and two-dimensional Henon–Heiles potential, which prove the efficiency of the proposed scheme and promise more general applications of the LDVR/FE-DVR method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.