Abstract

Track fastener defect detection is an essential component in ensuring railway safety operations. Traditional manual inspection methods no longer meet the requirements of modern railways. The use of deep learning image processing techniques for classifying and recognizing abnormal fasteners is faster, more accurate, and more intelligent. With the widespread use of unmanned aerial vehicles (UAVs), conducting railway inspections using lightweight, low-power devices carried by UAVs has become a future trend. In this paper, we address the characteristics of track fastener detection tasks by improving the YOLOv4-tiny object detection model. We improved the model to output single-scale features and used the K-means++ algorithm to cluster the dataset, obtaining anchor boxes that were better suited to the dataset. Finally, we developed the FPGA platform and deployed the transformed model on this platform. The experimental results demonstrated that the improved model achieved an mAP of 95.1% and a speed of 295.9 FPS on the FPGA, surpassing the performance of existing object detection models. Moreover, the lightweight and low-powered FPGA platform meets the requirements for UAV deployment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call