Abstract
Linear discrimination analysis (LDA) technique is an important and well-developed area of image recognition and to date many linear discrimination methods have been put forward. Despite these efforts, there persist in LDA at least three areas of weakness. The first weakness is that not all the discrimination vectors that are obtained are useful in pattern classification. Second, it remains computationally expensive to make the discrimination vectors completely satisfy statistical uncorrelation. The third weakness is that it is necessary to select the appropriate principal components. In this paper, we propose to improve discrimination technique in these three areas and to that end present an improved LDA (ILDA) approach which synthesizes these improvements. Experimental results on different image databases demonstrate that our improvements on LDA are efficient, and that ILDA outperforms other state-of-the-art linear discrimination methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.