Abstract

In recent years, sparse recovery-based space-time adaptive processing (SR-STAP) technique has exhibited excellent performance with insufficient samples. Sparse Bayesian learning algorithms have received considerable attention for their remarkable and reliable performance. Its implementation in large-scale radar systems is however hindered by the overwhelming computational load and slow convergence speed. This paper aims to address these drawbacks by proposing an improved iterative reweighted sparse Bayesian learning algorithm based on expansion-compression variance-components (ExCoV-IIR-MSBL). Firstly, a modified Bayesian probabilistic model for SR-STAP is introduced. Exploiting the intrinsic sparsity prior of the clutter, we divide the space-time coefficients into two parts: the significant part with nontrivial coefficients and the irrelevant part with small or zero coefficients. Meanwhile, we only assign independent hyperparameters to the coefficients in the significant part, while the remaining coefficients share a common hyperparameter. Then the generalized maximum likelihood (GML) criterion is adopted to classify the coefficients, ensuring both accuracy and efficiency. Hence, the parameter space in Bayesian inference will be significantly reduced, and the computational efficiency can be considerably promoted. Both theoretical analysis and numerical experiments validate that the proposed algorithm achieves superior performance with considerably improved computational efficiency in sample shortage scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.