Abstract

An analysis is presented to inspect the steady three-dimensional boundary layer flow of an Oldroyd-B fluid over a stretching surface. Heat and mass transfer analysis are scrutinized by utilizing the non-Fourier’s and non-Fick’s models in rotating frame. The expressions of heat and mass fluxes are based upon the Cattaneo-Christov theory. The Cattaneo-Christov heat and mass flux models are used for the development of energy and concentration equations which account the contribution of thermal and concentration relaxation times. Additionally, temperature dependent thermal conductivity is also considered here. Apposite transformations are betrothed to obtain the ordinary differential equations with high nonlinearity. The analytical solutions are established for the resulting ordinary differential system by utilizing the homotopy analysis method (HAM). Our observations reveal that the rotation parameter serves to diminish the primary velocity f′(η) and associated momentum boundary layer thickness and similar trend is observed for the secondary velocity g(η). It is also observed that the thermal and concentration relaxation time parameters reduce the temperature and concentration profiles. For endorsement of the current relation, the attained consequences are eminent with former exploration in precise cases and splendid agreement has been distinguished.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call