Abstract
This paper presents an improved group search optimizer (iGSO) for solving mechanical design optimization problems. In the proposed algorithm, subpopulations and a co-operation evolutionary strategy were adopted to improve the global search capability and convergence performance. The iGSO is evaluated on two optimization problems of classical mechanical design: spring and pressure vessel. The experimental results are analyzed in comparison with those reported in the literatures. The results show that iGSO has much better convergence performance and is easier to implement in comparison with other existing evolutionary algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have