Abstract
Brain image segmentation is an important part of medical image analysis. Due to the effect of imaging mechanism, MR images usually intensity in homogeneity, which is also named as bias field. Traditional Gaussian Mixed Model (GMM) method is hard to obtain satisfied segmentation results with the effect of noise and bias field. We propose a novel model based on GMM and nonlocal information. The improved method coupled segmentation and bias field correction that can manage the bias field while segmenting the image. In order to obtain a smooth bias field, we employed the Legendre Polynomials to fit it and merged it to the EM framework. We also use the non local information to deal with the noise and preserve geometrical edges information. The results show that our method can obtain more accurate results and bias field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Signal Processing, Image Processing and Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.