Abstract

The existing active contour models (ACMs) based on bias field (BF) correction mostly rely on a single BF assumption and lack in-depth discussion on the convexity of the energy functional, often leading to the problem of local minima. To address this issue, this paper introduces a dual BF and proposes a convex level-set (LS) method based on multiplicative-additive (MA) model to achieve global minima. Firstly, a MA model is adopted as the fidelity term, and a kernel function is introduced to adjust the size of the intensity inhomogeneous neighborhood, enhancing the adaptability to intensity inhomogeneity. Then, the convex LS function is embedded in the variational framework to ensure convexity of each variable in the energy functional. This transformation turns the segmentation problem into a convex optimization problem. By introducing the total variation regularization term to smooth the LS function, the model's resistance to noise is effectively enhanced. Finally, by minimizing the proposed energy functional, image segmentation and BF correction are successfully achieved. Experimental results validate the global minima property of our model, while also demonstrating good flexibility in the initial contour. The proposed model achieves superior segmentation results compared to other classical ACMs on various types of images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.