Abstract

Hyperbox classifier is an efficient tool for modern pattern classification problems due to its transparency and rigorous use of Euclidian geometry. Fuzzy min–max (FMM) network efficiently implements the hyperbox classifier, and has been modified several times to yield better classification accuracy. However, the obtained accuracy is not up to the mark. Therefore, in this paper, a new improved FMM (IFMM) network is proposed to increase the accuracy rate. In the proposed IFMM network, a modified constraint is employed to check the expandability of a hyperbox. It also uses semiperimeter of the hyperbox along with k -nearest mechanism to select the expandable hyperbox. In the proposed IFMM, the contraction rules of conventional FMM and enhanced FMM (EFMM) are also modified using semiperimeter of a hyperbox in order to balance the size of both overlapped hyperboxes. Experimental results show that the proposed IFMM network outperforms the FMM, k- nearest FMM, and EFMM by yielding more accuracy rate with less number of hyperboxes. The proposed methods are also applied to histopathological images to know the best magnification factor for classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.