Abstract

In this paper, the Fuzzy Min-Max (FMM) neural network along with two modified FMM models are used for tackling medical diagnostic problems. The original FMM network establishes hyperboxes with fuzzy sets in its structure for classifying input patterns into different output categories. While the first modified FMM model uses the membership function and the Euclidian distance to classify the input patterns, the second modified FMM model employs only the Euclidian distance for the same process. Unlike the original FMM network, the two modified FMM models undergo a pruning process, after network training, to remove hyperboxes with low confidence factors. To assess the effectiveness of the three FMM networks in medical diagnosis, a set of real medical records from suspected Acute Coronary Syndrome (ACS) patients is collected and used for experimentation. The bootstrap method is used to analyze the results statistically. Implications of the experimental outcomes are discussed, and the potential of using the FMM networks a decision support tool for medical prognostic and diagnostic problems is demonstrated.KeywordsAcute Coronary SyndromeMembership FunctionArtificial Neural Network ModelInput PatternAcute Coronary Syndrome PatientThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.