Abstract
We propose an improved algorithm for counting the number of Hamiltonian cycles in a directed graph. The basic idea of the method is sequential acceptance/rejection, which is successfully used in approximating the number of perfect matchings in dense bipartite graphs. As a consequence, a new ratio of the number of Hamiltonian cycles to the number of 1-factors is proposed. Based on this ratio, we prove that our algorithm runs in expected time of O ( n 8.5 ) for dense problems. This improves the Markov chain Monte Carlo method, the most powerful existing method, by a factor of at least n 4.5 ( log n ) 4 in running time. This class of dense problems is shown to be nontrivial in counting, in the sense that they are #P-Complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.