Abstract

Frame duplication is a common way of digital video forgeries. State-of-the-art approaches of duplication detection usually suffer from heavy computational load. In this paper, the authors propose a new algorithm to detect duplicated frames based on video sub-sequence fingerprints. The fingerprints employed are extracted from the DCT coefficients of the temporally informative representative images (TIRIs) of the sub-sequences. Compared with other similar algorithms, this study focuses on improving fingerprints representing video sub-sequences and introducing a simple metric for the matching of video sub-sequences. Experimental results show that the proposed algorithm overall outperforms three related duplication forgery detection algorithms in terms of computational efficiency, detection accuracy and robustness against common video operations like compression and brightness change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.