Abstract

Detection of changes in synthetic aperture radar (SAR) images is an important challenge due to the effects of speckle noise on these images. In recent years, appropriate methods for SAR-based-change detection have been developed based on the level set methods (LSM). These methods need to set parameters for defining a proper initial contour. Moreover, the gradient information is only employed in the total energy of these methods for segmentation of the difference image. In this study, a novel method has been proposed for unsupervised change detection of multitemporal SAR images based on the improved fast level set method (IFLSM) initialized with a combination of k-means and Otsu techniques. The proposed method utilizes the discrete wavelet transform (DWT) fusion strategy and edge enhancement to achieve a noise-resistant difference image from the mean-ratio and log-ratio images. Afterward, the generated binary change map (CM) by applying a combination of k-means and Otsu techniques on the difference image is used as the initial contour to achieve a final CM on difference image using the IFLSM. To check advantages of the proposed method, experiments are applied on two sets of multitemporal SAR images corresponding to artificial Chitgar Lake (under reconstruction) in Tehran (Iran) taken by TerraSAR-X satellite in 2011 and 2012, and corresponding to San Pablo and Briones reservoirs in California (USA) acquired by ERS-2 satellite in 2003 and 2004. Results of proposed method were compared with results of some well-known unsupervised change detection methods. Experimental results prove the sufficiency of the proposed method in unsupervised change detection in terms of accuracy, implementation time, and computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.