Abstract

Soil bulk density (BD) is a parameter dependent on soil texture, compositions of soil minerals and organic matter and the extent of soil compaction. Seasonal freeze/thaw in arid areas with shallow groundwater tables (AASGT) may significantly change BD and hence soil hydrothermal properties and water holding capacity. Therefore, quantifying soil bulk density changes (BDC) under freeze/thaw conditions can improve estimates of soil water-salt dynamics in AASGT. In this study, we conducted field experiments to investigate the soil water-salt dynamics under freeze/thaw conditions from three typical land-use types (i.e., farmland, woodland, and natural land) in the upper Yellow River basin, China. We proposed a method to estimate BDC, which can better describe the soil water-salt dynamics during the freeze/thaw period. Our results showed marked BDC occurred in all layers within the 0–100 cm profile in natural land, while mainly at the 20–80 cm profile in farmland. During the freezing period, BD in farmland and natural land first decreased rapidly and then remained relatively stable until the thawing period started. After that, BD gradually increased during the thawing period. The largest BDC in farmland and natural land were 0.48 g cm−3 (occurring at the 30–40 cm layer) and 0.43 g cm−3 (occurring at the 80–90 cm layer), respectively, close to 30 % of their initial values. The differences in BDC between the three land-use types were mainly owing to their differences in groundwater table depth, initial soil salt concentration, soil texture, and surface coverage conditions. Moreover, in farmland and natural land, ignoring BDC resulted in different degrees of overestimation or underestimation in soil water content, water fluxes, and soil hydrothermal properties in the selected soil layers. This study demonstrates that considering BDC can improve the accuracy of soil water-salt dynamics estimation in AASGT under freeze/thaw conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.