Abstract
AbstractAn improved Elman neural network (IENN) controller with particle swarm optimization (PSO) is presented for nonlinear systems. The proposed controller is composed of a quasi‐ARX neural network (QARXNN) prediction model and a switching mechanism. The switching mechanism is used to guarantee that the prediction model works well. The primary controller is designed based on IENN using the backpropagation (BP) learning algorithm with PSO. PSO is used to adjust the learning rates in the BP process for improving the learning capability. The adaptive learning rates of the controller are investigated via the Lyapunov stability theorem. The proposed controller performance is verified through numerical simulation. The method is compared with the fuzzy switching and 0/1 switching methods to show its effectiveness in terms of stability, accuracy, and robustness. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEJ Transactions on Electrical and Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.