Abstract

A robust adaptive recurrent cerebellar model articulation controller (RARC) neural network for non-linear systems using the genetic particle swarm optimization (GPSO) algorithm is presented in this study. The RARC is used as the principal tracking controller and the robust compensation controller is designed to recover the residual of the approximation error. In the RARC neural network, the steepest descent gradient method and the Lyapunov function are used for deriving the adaptive law parameter of the system. Besides, the learning rates play an important role in these adaptive laws and they have a great effect on the functions of control systems. In this paper, the combination of the genetic algorithm with the mutation particle swarm optimization algorithm is applied to seek for the optimal learning rates of the RARC adaptation laws. The numerical simulations about the inverted pendulum system as well as the robot manipulator system are given to confirm the effectiveness and practicability of the GPSO-RARC-based control system. Compared with other control schemes, the proposed control scheme is testified to be reliable and can obtain the optimal parameter about the learning rates and the minimum root mean square error for non-linear systems.

Highlights

  • Speaking, almost all practical control systems are non-linear systems and there is a difference between the mathematical model and the practical system

  • The optimal learning rate for controller is calculated by genetic particle swarm optimization (GPSO) algorithm, the adaptive recurrent cerebellar model articulation controller is used as the principal tracking controller and the robust compensation controller is designed to recover the residual of the approximation error, and the steepest descent gradient method and the Lyapunov function are used for deriving the online adaptive law parameter, so that the system stability can be guaranteed

  • The main findings of this study are the development of a GPSO-based RCMAC with the adaptive law for updating parameters, and the learning rates can be optimized to best value based on the GPSO algorithm

Read more

Summary

Introduction

Almost all practical control systems are non-linear systems and there is a difference between the mathematical model and the practical system. A robust adaptive recurrent cerebellar model neural network for nonlinear system based on GPSO algorithm is investigated, in order to avoid trial-and-error and improve the local optimal problems.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.