Abstract

In this paper, an improved receiver based on diversity combining is proposed to improve the bit error rate (BER) performance of layered asymmetrically clipped optical fast orthogonal frequency division multiplexing (ACO-FOFDM) for intensity-modulated and direct-detected (IM/DD) optical transmission systems. Layered ACO-FOFDM can compensate the weakness of traditional ACO-FOFDM in low spectral efficiency, the utilization of discrete cosine transform in FOFDM system instead of fast Fourier transform in OFDM system can reduce the computational complexity without any influence on BER performance. The BER performances of layered ACO-FOFDM system with improved receiver based on diversity combining and DC-offset FOFDM (DCO-FOFDM) system with optimal DC-bias are compared at the same spectral efficiency. Simulation results show that under different optical bit energy to noise power ratios, layered ACO-FOFDM system with improved receiver has 2.86dB, 5.26dB and 5.72dB BER performance advantages at forward error correction limit over DCO-FOFDM system when the spectral efficiencies are 1 bit/s/Hz, 2 bits/s/Hz and 3 bits/s/Hz, respectively. Layered ACO-FOFDM system with improved receiver based on diversity combining is suitable for application in the adaptive IM/DD systems with zero DC-bias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call