Abstract

Dissipative particle dynamics (DPD) and smoothed dissipative particle dynamics (sDPD) have become most popular numerical techniques for simulating mesoscopic flow phenomena in fluid systems. Several DPD/sDPD simulations in the literature indicate that the model fluids should be designed with their dynamic response, measured by the Schmidt number, in a relevant range in order to reach a good agreement with the experimental results. In this paper, we propose a new dissipative weighting function (or a new kernel) for the DPD (or the sDPD) formulation, which allows both the viscosity and the Schmidt number to be independently specified as input parameters. We also show that some existing dissipative functions/kernels are special cases of the proposed one, and the imposed viscosity of the present DPD/sDPD system has a lower and upper limit. Numerical verification of the proposed function/kernel is conducted in viscometric flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call