Abstract
In this study, a Dissipative Particle Dynamics (DPD) method is employed with its input parameters directly determined from the fluid properties, such as the fluid mass density, water compressibility, and viscosity. The investigation of thermal fluctuation scaling requires constant fluid properties, and this proposed DPD version meets this requirement. Its numerical verifications in simple or complex fluids under viscometric or non-viscometric flows indicate that (i) the level of thermal fluctuations in the DPD model for both types of fluids is consistently reduced with an increase in the coarse-graining level and (ii) viscometric or non-viscometric flows of a model fluid at different coarse-graining levels have a similar behavior. Furthermore, to reduce the compressibility effect of the DPD fluid in simulating incompressible flows, a new simple treatment is presented and shown to be very effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.