Abstract

As a promising information theory, reinforcement learning has gained much attention. This paper researches a wind-storage cooperative decision-making strategy based on dueling double deep Q-network (D3QN). Firstly, a new wind-storage cooperative model is proposed. Besides wind farms, energy storage systems, and external power grids, demand response loads are also considered, including residential price response loads and thermostatically controlled loads (TCLs). Then, a novel wind-storage cooperative decision-making mechanism is proposed, which combines the direct control of TCLs with the indirect control of residential price response loads. In addition, a kind of deep reinforcement learning algorithm called D3QN is utilized to solve the wind-storage cooperative decision-making problem. Finally, the numerical results verify the effectiveness of D3QN for optimizing the decision-making strategy of a wind-storage cooperation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.