Abstract

Neighborhood classifier, a common classification method, is applied in pattern recognition and data mining. The neighborhood classifier mainly relies on the majority voting strategy to judge each category. This strategy only considers the number of samples in the neighborhood but ignores the distribution of samples, which leads to a decreased classification accuracy. To overcome the shortcomings and improve the classification performance, D-S evidence theory is applied to represent the evidence information support of other samples in the neighborhood, and the distance between samples in the neighborhood is taken into account. In this paper, a novel attribute reduction method of neighborhood rough set with a dynamic updating strategy is developed. Different from the traditional heuristic algorithm, the termination threshold of the proposed reduction algorithm is dynamically optimized. Therefore, when the attribute significance is not monotonic, this method can retrieve a better value, in contrast to the traditional method. Moreover, a new classification approach based on D-S evidence theory is proposed. Compared with the classical neighborhood classifier, this method considers the distribution of samples in the neighborhood, and evidence theory is applied to describe the closeness between samples. Finally, datasets from the UCI database are used to indicate that the improved reduction can achieve a lower neighborhood decision error rate than classical heuristic reduction. In addition, the improved classifier acquires higher classification performance in contrast to the traditional neighborhood classifier. This research provides a new direction for improving the accuracy of neighborhood classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.