Abstract
Aiming at the new coronavirus that appeared in 2019, which has caused a large number of infected patients worldwide due to its high contagiousness, in order to detect the source of infection in time and cut off the chain of transmission, we developed a new Chest X-ray (CXR) image classification algorithm with high accuracy, simple operation and fast processing for COVID-19. The algorithm is based on ConvNeXt pure convolutional neural network, we adjusted the network structure and loss function, added some new Data Augmentation methods and introduced attention mechanism. Compared with other classical convolutional neural network classification algorithms such as AlexNet, ResNet-34, ResNet-50, ResNet-101, ConvNeXt-tiny, ConvNeXt-small and ConvNeXt-base, the improved algorithm has better performance on COVID dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.