Abstract

A carrier rate model taking carrier delocalization into account is presented to analyze current dependent internal quantum efficiency of InGaN based light-emitting diodes (LEDs). By fitting normalized experimental internal quantum efficiency-current curves, both injection efficiency and radiative recombination efficiency depending on current can be obtained. Based on the fitting results from two LED samples with and without the InGaN interlayer beneath the active regions of 5 InGaN quantum wells (QWs), carrier delocalization and carrier leakage are believed to lead to the efficiency droop effect under considerable and even larger injection, respectively. By investigating two LED samples with 8 and 10 QWs, it is found that the 8-QWs LED has the highest radiative recombination efficiency over 80% and the 10-QWs one has the highest injection efficiency over 50% under 120 A/cm2. This means that increasing QW number is an effective method to suppress droop effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.