Abstract

With the limitation of air traffic and the rapid increase in the number of flights, flight delay is becoming more frequent. Flight delay leads to financial and time losses for passengers and increases operating costs for airlines. Therefore, the establishment of an accurate prediction model for flight delay becomes vital to build an efficient airline transportation system. The air transportation system has a huge amount of data and complex operation modes, which is suitable for analysis by using machine learning methods. This paper discusses the factors that may affect the flight delay, and presents a new flight delay prediction model. The five warning levels are defined based on flight delay database by using K-means clustering algorithm. After extracting the key factors related to flight operation by the grey relational analysis (GRA) algorithm, an improved machine learning algorithm called GRA — Genetic algorithm (GA) — back propagation neural network, GRA-GA-BP, is introduced, which is optimized by GA. The calculation results show that, compared with models before optimization and other two algorithms in previous papers, the proposed prediction model based on GRA-GA-BP algorithm shows a higher prediction accuracy and more stability. In terms of operation efficiency and memory consumption, it also has good performance. The analysis presented in this paper indicates that this model can provide effective early warnings for flight delay, and can help airlines to intervene in flights with abnormal trend in advance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.