Abstract
Efficient solution of the Vlasov equation, which can be up to six-dimensional, is key to the simulation of many difficult problems in plasma physics. The discontinuous Petrov-Galerkin (DPG) finite element methodology provides a framework for the development of stable (in the sense of Ladyzhenskaya–Babuška–Brezzi conditions) finite element formulations, with built-in mechanisms for adaptivity. While DPG has been studied extensively in the context of steady-state problems and to a lesser extent with space-time discretizations of transient problems, relatively little attention has been paid to time-marching approaches. In the present work, we study a first application of time-marching DPG to the Vlasov equation, using backward Euler for a Vlasov-Poisson discretization. We demonstrate adaptive mesh refinement for two problems: the two-stream instability problem, and a cold diode problem. We believe the present work is novel both in its application of unstructured adaptive mesh refinement (as opposed to block-structured adaptivity, which has been studied previously) in the context of Vlasov-Poisson, as well as in its application of DPG to the Vlasov-Poisson system. We also discuss extensive additions to the Camellia library in support of both the present formulation as well as extensions to higher dimensions, Maxwell equations, and space-time formulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have