Abstract

With the rapid growth of social networks, mining customer opinions based on online reviews is crucial to understand consumer needs. Due to the richness of language expressions, customer opinions are often expressed implicitly. However, previous studies usually focus on mining explicit opinions to understand consumer needs. In this paper, we propose a novel implicit opinion analysis model to perform implicit opinion analysis of Chinese customer reviews at both the feature and review levels. First, we extract an implicit-opinionated review/clause dataset from raw review dataset and introduce the concept of the feature-based implicit opinion pattern (FBIOP). Secondly, we develop a clustering algorithm to construct product feature categories. Based on the constructed feature categories, FBIOPs can be mined from the extracted implicit-opinionated clause dataset. Thirdly, the sentiment intensity and polarity of each FBIOP are calculated by using the Chi squared test and pointwise mutual information. Fourthly, according to the resulting FBIOP polarities, the polarities of implicit opinions can be determined at both the feature and review levels. Car forum reviews written in Chinese are collected and labeled as the experimental dataset. The results show that the proposed model outperforms the traditional support vector machine model and the cutting-edge convolutional neural network model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.