Abstract

Hermitian plus possibly non-Hermitian low rank matrices can be efficiently reduced into Hessenberg form. The resulting Hessenberg matrix can still be written as the sum of a Hermitian plus low rank matrix. In this paper we develop a new implicit multishift $QR$-algorithm for Hessenberg matrices, which are the sum of a Hermitian plus a possibly non-Hermitian low rank correction. The proposed algorithm exploits both the symmetry and low rank structure to obtain a $QR$-step involving only $\mathcal{O}(n)$ floating point operations instead of the standard $\mathcal{O}(n^2)$ operations needed for performing a $QR$-step on a Hessenberg matrix. The algorithm is based on a suitable $\mathcal{O}(n)$ representation of the Hessenberg matrix. The low rank parts present in both the Hermitian and low rank part of the sum are compactly stored by a sequence of Givens transformations and a few vectors. Due to the new representation, we cannot apply classical deflation techniques for Hessenberg matrices. A new, efficient technique is developed to overcome this problem. Some numerical experiments based on matrices arising in applications are performed. The experiments illustrate effectiveness and accuracy of both the $QR$-algorithm and the newly developed deflation technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.