Abstract
In the recent work of Candes et al, the problem of recovering low rank matrix corrupted by i.i.d. sparse outliers is studied and a very elegant solution, principal component pursuit, is proposed. It is motivated as a tool for video surveillance applications with the background image sequence forming the low rank part and the moving objects/persons/abnormalities forming the sparse part. Each image frame is treated as a column vector of the data matrix made up of a low rank matrix and a sparse corruption matrix. Principal component pursuit solves the problem under the assumptions that the singular vectors of the low rank matrix are spread out and the sparsity pattern of the sparse matrix is uniformly random. However, in practice, usually the sparsity pattern and the signal values of the sparse part (moving persons/objects) change in a correlated fashion over time, for e.g., the object moves slowly and/or with roughly constant velocity. This will often result in a low rank sparse matrix. For video surveillance applications, it would be much more useful to have a real-time solution. In this work, we study the online version of the above problem and propose a solution that automatically handles correlated sparse outliers. In fact we also discuss how we can potentially use the correlation to our advantage in future work. The key idea of this work is as follows. Given an initial estimate of the principal directions of the low rank part, we causally keep estimating the sparse part at each time by solving a noisy compressive sensing type problem. The principal directions of the low rank part are updated every-so-often. In between two update times, if new Principal Components' directions appear, the “noise” seen by the Compressive Sensing step may increase. This problem is solved, in part, by utilizing the time correlation model of the low rank part. We call the proposed solution “Real-time Robust Principal Components' Pursuit”. It still requires the singular vectors of the low rank part to be spread out, but it does not require i.i.d.-ness of either the sparse part or the low rank part.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.