Abstract

An implicit harmonic balance (HB) method for modeling the unsteady nonlinear periodic flow about vibrating airfoils in turbomachinery is presented. An implicit edge-based three-dimensional Reynolds-averaged Navier–Stokes equations (RANS) solver for unstructured grids, which runs both on central processing units (CPUs) and graphics processing units (GPUs), is used. The HB method performs a spectral discretization of the time derivatives and marches in pseudotime, a new system of equations where the unknowns are the variables at different time samples. The application of the method to vibrating airfoils is discussed. It is shown that a time-spectral scheme may achieve the same temporal accuracy at a much lower computational cost than a backward finite-difference method at the expense of using more memory. The performance of the implicit solver has been assessed with several application examples. A speed-up factor of 10 is obtained between the spectral and finite-difference version of the code, whereas an additional speed-up factor of 10 is obtained when the code is ported to GPUs, totalizing a speed factor of 100. The performance of the solver in GPUs has been assessed using the tenth standard aeroelastic configuration and a transonic compressor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.