Abstract
We solve fundamental problems in Oka theory by establishing an implicit function theorem for sprays. As the first application of our implicit function theorem, we obtain an elementary proof of the fact that approximation yields interpolation. This proof and Lárusson’s elementary proof of the converse give an elementary proof of the equivalence between approximation and interpolation. The second application concerns the Oka property of a blowup. We prove that the blowup of an algebraically Oka manifold along a smooth algebraic center is Oka. In the appendix, equivariantly Oka manifolds are characterized by the equivariant version of Gromov’s condition [Formula: see text], and the equivariant localization principle is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.