Abstract

A FORTRAN 77 implementation of Watson's algorithm for computing two-dimensional Delaunay triangulations is described. The algorithm is shown to have an asymptotic time complexity bound which is better than O(N 1.5) by applying it to collections of N points generated randomly within the unit square. The computer code obeys strict FORTRAN 77 syntax. Excluding the memory needed to store the co-ordinates of the points, it requires slightly greater than 9N integer words of memory to assemble and store the Delaunay triangulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.