Abstract
In recent years, the growth of renewable energy production has encouraged the development of new technologies, such as High-Voltage Direct Current (HVDC) networks, that enhance the integration of such energy sources to power transmission grids. However, this type of technology introduces new challenges in the way power transmission systems are controlled and operated, as faster and more complex control strategies will be needed in a domain which nowadays relies heavily on human decisions. In this context, Discrete Event Systems (DES) modeling and Supervisory Control Theory (SCT) are powerful tools for the development of a supervisory control to be deployed in the grid. This paper presents an application of the SCT to HVDC grids and proposes an implementation method for the resulting supervisors. The proposed method is capable of integrating decentralized and discrete-event controllers that interact with the continuous-time physical system. The language chosen for the implementation is C code, as it can be easily incorporated in power system simulation software, such as EMTP-RV. The method is validated by the simulation of the start-up of a point-to-point link in the EMTP-RV software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.