Abstract

A novel fluorescence resonance energy transfer (FRET)-based ratiometric emission fluorescent probe AT was designed and developed in which the imidazo[1,5-α]pyridine was served as a FRET donor and tricyanofuran (TCF) as the FRET acceptor to detect SO32-/HSO3- based on the Michael addition reaction. Probe AT had a high energy transfer efficiency (95%) and a large pseudo-Stokes shift (259 nm) in EtOH/PBS buffer (5/5, v/v). It also possessed good selectivity and quick response to SO32-/HSO3-. There was good linearity between the ratio of fluorescence intensity (F499/F645) and the concentrations of SO32-/HSO3- in the ranges of 1.5–7.5 μM and 9–20 μM, with calculated detection limits (LOD) of 55 nM. In addition, the probe could also detect the concentrations of SO32-/HSO3- in real samples such as environmental water and sugar, allowing the probe to be used in a variety of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.