Abstract

Limited-angle computed tomography is a very challenging problem in applications. Due to a high degree of ill-posedness, conventional reconstruction algorithms will introduce blurring along the directions perpendicular to the missing projection lines, as well as streak artifacts when applied on limited-angle data. Various models and algorithms have been proposed to improve the reconstruction quality by incorporating priors, among which the total variation, i.e. l1 norm of gradient, and l0 norm of the gradient are the most popular ones. These models and algorithms partially solve the blurring problem under certain situations. However, the fundamental difficulty remains. In this paper, we propose a reconstruction model for limited-angle computed tomography, which incorporates two regularization terms that play the role of edge-preserving diffusion and smoothing along the x-direction and y -direction respectively. Then, an alternating minimization algorithm is proposed to solve the model approximately. The proposed model is inspired by the theory of visible and invisible singularities of limited-angle data, developed by Quinto et al. By incorporating visible singularities as priors into an iterative procedure, the proposed algorithm could produce promising results and outperforms state-of-the-art algorithms for certain limited-angle computed tomography applications. Extensive experiments on both simulated data and real data are provided to validate our model and algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.