Abstract
Abstract The term Kirchhoff migration refers to a collection of approximate linearized inversion formulas for solving the inverse problem of seismic tomography which entails reconstructing the Earth’s subsurface from reflected wave fields. A number of such formulas exists, the first dating from the 1950 s. As far as we know, these formulas have not yet been mathematically compared with respect to their imaging properties. This shortcoming is to be alleviated by the present work: we systematically discuss the advantages and disadvantages of the formulas in 2D from a microlocal point of view. To this end we consider the corresponding imaging operators in an unified framework as pseudodifferential or Fourier integral operators. Numerical examples illustrate the theoretical insights and allow a visual comparison of the different formulas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have