Abstract

We present Hubble Space Telescope Wide Field Camera 3 observations of the core of the Phoenix Cluster SPT-CLJ2344-4243 in five broadband filters spanning rest-frame 1000--5500A. These observations reveal complex, filamentary blue emission, extending for >40kpc from the brightest cluster galaxy. We observe an underlying, diffuse population of old stars, following an r^1/4 distribution, confirming that this system is somewhat relaxed. The spectral energy distribution in the inner part of the galaxy, as well as along the extended filaments, is a smooth continuum and is consistent with that of a star-forming galaxy, suggesting that the extended, filamentary emission is not due to the central AGN, either from a large-scale ionized outflow or scattered polarized UV emission, but rather a massive population of young stars. We estimate an extinction-corrected star formation rate of 798 +/- 42 Msun/yr, consistent with our earlier work based on low spatial resolution ultraviolet, optical, and infrared imaging. The lack of tidal features and multiple bulges, combine with the need for an exceptionally massive (>10^11 Msun) cold gas reservoir, suggest that this star formation is not the result of a merger of gas-rich galaxies. Instead, we propose that the high X-ray cooling rate of ~2700 Msun/yr is the origin of the cold gas reservoir. The combination of such a high cooling rate and the relatively weak radio source in the cluster core suggests that feedback has been unable to halt cooling in this system, leading to this tremendous burst of star formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call