Abstract
When people encounter problems, they typically go through a period of puzzlement and require inspiration from other aspects of life to solve these problems. Friedrich Kekule, for example, discovered the molecular structure of benzene after dreaming of two serpents caught in each other's tails, which formed a circle on a distinctive ring. Archimedes derived insight into the relationship between weight and volume when he noticed displaced water in a bathtub. Numerous major inventions in history have been based on bionic imitation, in which biological systems are applied to the creation of artificial devices and machines. In most previous studies, creativity has been investigated primarily through divergent thinking tasks and insightful problem solving. For example, by comparing the alternative uses task and intelligence-related tasks, different patterns of electrophysiological brain activity and a stronger level of anterior prefrontal brain activation were observed. Although these findings aid the understanding of creativity, whether the progression of scientific invention is identical to the processes discussed in the above-mentioned studies remains unclear. Specifically, the process of prototype position effect of insight in scientific innovation has not been directly addressed. To explore the neural mechanism for prototype position effect of insight in scientific innovation, we selected 40 novel scientific innovation problems (to which scientists have undergone actually but college students did not know the answers) as the material and used fMRI technique for the experiments. Zhang Qinglin proposed that in reality, insight should be caused by "prototypal events activation"; it suggests that the key to solving insight problems is to activate the "prototypal event" correctly and gain "key heuristic information" under experimental conditions.Based on Zhang's hypothesis, this study was designed to explore the neural mechanism governing the act of catching inspiration in scientific innovation. In order to test these hypotheses, we adopted "five to five" paradigm. In this study, the prototype position contains former-problem (problem guide) and former-prototype. The participants were divided into two groupes. First groupes, the participants were asked to investigate 40 post-prototype inventional problems. Second groupes were opposite, the participants were asked to study 40 former-problem inventional problems. The instruments used in the experiments were 40 inventional problems and SPSS 17.0 was used for the statistical analyses. Behavior date showed the mean inventional problem-solving score for former-problem was higher than for former-prototype. And our fMRI data showed that the left middle temporal gyrus、left middle frontal gyrus were significantly activated when college students successfully caught inspiration under former-problem condition; left cingulate gyrus and left middle frontal gyrus were significantly activated when college students successfully solve the problem in the case of former-prototype condition. To the best of our knowledge, this work is the first fMRI study to investigate the brain activation of critical cognitive processes (automatic activation for catching inspiration) behind scientific innovation. Moreover, the real-life scientific innovations used in the experiments have higher ecological validity than the tasks (riddles, remote association tasks, and so on) used in previous studies. That is, the fMRI results can provide valuable insight into the neural basis of catching inspiration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have