Abstract

We propose an exterior Newton method for strictly convex quadratic programming (QP) problems. This method is based on a dual formulation: a sequence of points is generated which monotonically decreases the dual objective function. We show that the generated sequence converges globally and quadratically to the solution (if the QP is feasible and certain nondegeneracy assumptions are satisfied). Measures for detecting infeasibility are provided. The major computation in each iteration is to solve a KKT-like system. Therefore, given an effective symmetric sparse linear solver, the proposed method is suitable for large sparse problems. Preliminary numerical results are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.