Abstract

In this paper LaSalle’s Invariance Principle for switched linear systems is studied. Unlike most existing results in which each switching mode in the system needs to be asymptotically stable, in this paper the switching modes are allowed to be only Lyapunov stable. Under certain ergodicity assumptions, an extension of LaSalle’s Invariance Principle for global asymptotic stability of switched linear systems is proposed provided that the kernels of derivatives of a common quadratic Lyapunov function with respect to the switching modes are disjoint (except the origin).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.