Abstract

A. M. Ostrowski established the stability of the procedure of successive approximations for Banach contractive maps. In this paper we generalize the above result by using a more general contractive definition introduced by F. Browder. Further, we study the case of maps on metrically convex metric spaces and compact metric spaces, obtaining results relative to fixed point theorems of D. W. Boyd and J. S. W. Wong, and M. Edelstein. Finally, as a by-product of our basic lemma, we extend a recent result of T. Vidalis concerning the convergence of an iteration procedure involving an infinite sequence of maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.