Abstract
The no-wait flow shop scheduling problem (NWFSSP) performs an important function in the manufacturing industry. Inspired by the overall process of teaching-learning, an extended framework of meta-heuristic based on the teaching-learning process is proposed, which consists of four parts, i.e. previewing before class, teaching phase, learning phase, reviewing after class. This paper implements a hybrid meta-heuristic based on probabilistic teaching-learning mechanism (mPTLM) to solve the NWFSSP with the makespan criterion. In previewing before class, an initial method that combines a modified Nawaz-Enscore-Ham (NEH) heuristic and the opposition-based learning (OBL) is introduced. In teaching phase, the Gaussian distribution is employed as the teacher to guide learners to search more promising areas. In learning phase, this paper presents a new means of communication with crossover. In reviewing after class, an improved speed-up random insert local search based on simulated annealing (SA) is developed to enhance the local searching ability. The computational results and comparisons based on Reeves, Taillard and VRF’s benchmarks demonstrate the effectiveness of mPTLM for solving the NWFSSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.