Abstract
The no-wait flow shop scheduling problem (NWFSP) performs an essential role in the manufacturing industry. In this paper, a factorial based particle swarm optimization with a population adaptation mechanism (FPAPSO) is implemented for solving the NWFSP with the makespan criterion. The nearest neighbor mechanism and NEH method are employed to generate a potential initial population. The factorial representation, which uniquely represents each number as a string of factorial digits, is designed to transfer the permutation domain to the integer domain. A variable neighbor search strategy based on the insert and swap neighborhood structure is introduced to perform a local search around the current best solution. A population adaptation (PA) mechanism is designed to control the diversity of the population and to avoid the particles being trapped into local optima. Furthermore, a runtime analysis of FPAPSO is performed with the level-based theorem. The computational results and comparisons with other state-of-the-art algorithms based on the Reeve's and Taillard's instances demonstrate the efficiency and performance of FPAPSO for solving the NWFSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.