Abstract
The research presented in this paper has extended the substructuring technique into the nonlinear domain in order to apply the finite element analysis (FEA) method to complex nonlinear structural design problems in the conceptual design stage. As conventional FE models based on substructures allow only linear analysis, it was necessary in this research to introduce a new algorithm capable of linearizing nonlinear structural problems with sufficient accuracy in order to enable evaluation of engineering design concepts in a more objective and rigorous manner in the early stages of design. The developed method was implemented within a commercial FE solver, and validated using a select number of case studies. The results obtained for the two sample solutions indicate that the new method has achieved an improvement in accuracy of 90% and 98% respectively compared to the conventional FE-based approach applied to the same class of design problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have