Abstract

If a metal contracts upon solidification, the specific volume of a metallic liquid phase must not be smaller than that of the corresponding crystal. As molten metals have higher thermal expansion coefficients compared with those of the corresponding crystals, the intersection point of two specific-volume–temperature plots of the liquid and the corresponding solid crystalline phase by analogy with Kauzmann’s paradox for entropy could be treated as an ideal glass-transition temperature. This paper describes this phenomenon observed for a number of pure metals and gives a semiempirical criterion for the achievement of a good glass-forming ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.