Abstract

The bioreaction database established by Ma and Zeng (Bioinformatics, 2003, 19, 270-277) for in silico reconstruction of genome-scale metabolic networks has been widely used. Based on more recent information in the reference databases KEGG LIGAND and Brenda, we upgrade the bioreaction database in this work by almost doubling the number of reactions from 3565 to 6851. Over 70% of the reactions have been manually updated/revised in terms of reversibility, reactant pairs, currency metabolites and error correction. For the first time, 41 spontaneous sugar mutarotation reactions are introduced into the biochemical database. The upgrade significantly improves the reconstruction of genome scale metabolic networks. Many gaps or missing biochemical links can be recovered, as exemplified with three model organisms Homo sapiens, Aspergillus niger, and Escherichia coli. The topological parameters of the constructed networks were also largely affected, however, the overall network structure remains scale-free. Furthermore, we consider the problem of computing biologically feasible shortest paths in reconstructed metabolic networks. We show that these paths are hard to compute and present solutions to find such paths in networks of small and medium size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.