Abstract

GoalTo apply signal processing and machine learning skills and knowledge in processing the EEG and MEG signal and further localize and evaluate the source of the finger stimulation. MethodsCognitive control is usually applied in information processing and behavioral response. In the preprocessing, baseline correction is implemented to analyze the pre-stimuli, combining ERP to mark the event related potential, studying the time-locked only behavior. Z-score transform, coherence and spec trum are calculated and analyzed in the functional connectivity analysis.In addition to the functional analysis, Bayes Optimizer evaluates the neuro imaging according to the hierarchical Bayes. The introduction of the application is described from both user and developer’s prospects. Results: Introduction of both user and developers aspects, on its modules from pre-processing, functional analysis and results visualization and evaluation is conducted with one specific clinical data case, including the correlation is higher especially on gamma band and the MVAR coherence on the whole source space depicting the relation between different regions, especially on somatosensory (compared by thalamus) when stimulated by finger activity, phase-lock property of the E/MEG signal and etc. Compared to a manual selection, the scaling parameter prediction can be improved with support vector machine (SVM). The evaluation results with Bayes Optimization, location prediction is superior in the somatosensory area and in the thalamus, the total reconstructed source space is larger, one of the realization of cognitive system comparing different kernels and classifiers. The SVM and discriminant classifier gives similar results evaluating the dipole localization and the parameter choice related as well to the shape parameter, noise level, hyperprior and etc. ConclusionApproaches of Brain Q are found to be suitable for pre-processing for the EEG and MEG data. The system is capable of functional analysis including coherence and spectral related computation. Machine learning techniques are conducted as well to analyze and evaluate the result of the dipole reconstruction and help to predict the better model parameters and the localization of the origin dipoles. A case on finger stimulation clinical data is conducted and the results of the analysis temporarily and spatially manifests its functionality for users and potential extensions for developers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.