Abstract

Due to its high temporal resolution, electroencephalography (EEG) is a promising research tool for studying functional and effective brain interaction. Yet, it is rather uncommon for researchers to validate their connectivity estimation methodologies prior to applying them to real data, even though problems have been pointed out regarding the validity of some of the predominant approaches. We here provide an extendable simulation framework that enables researchers to test their analysis pipelines on customizable realistically simulated EEG data. We define three simple criteria to measure source localization, connectivity detection and directionality estimation performance. All data and code needed to generate pseudo-EEG data and to benchmark a method's estimation performance are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.