Abstract

We have developed a radioluminescence-based survey meter for use in industries in which there is involvement in naturally occurring radioactive material (NORM), also in support of those needing to detect other weak emitters of radiation. The functionality of the system confronts particular shortcomings of the handheld survey meters that are currently being made use of. The device couples a LYSO:Ce scintillator with a photodetector via a polymer optical fibre waveguide, allowing for "intrinsically safe" inspection within pipework, separators, valves and other such component pieces. The small-diameter optical fibre probe is electrically passive, immune to electromagnetic interference, and chemically inert. The readout circuit is entirely incorporated within a handheld casing housing a silicon photomultiplier (SiPM) detection circuit and a microprocessor circuit connected to an LCD display. A 15 m long flexible PMMA optical fibre waveguide is butt coupled to an ABS plastic probe that retains the LYSO:Ce scintillator. Initial tests have included the use of lab-based mixed gamma-ray sources, measurements being made in concert with a reference conventional GM survey-meter. Characterization, via NORM sources at a decontamination facility, has shown useful sensitivity, covering the dose-rate range 0.10- to 28 µSv h−1 (R-squared 0.966), extending to 80 µSv/h as demonstrated in use of a Cs-137 source. The system is shown to provide an effective tool for detection of radioactivity within hard to access locations, in particular for sources emitting at low radiation levels, down to values that approach background.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.