Abstract

Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 ± 5.0 years; MMSE 29.3 ± 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency.

Highlights

  • Studies on the cognitive neuroscience of aging have reliably revealed age-related differences in brain activation during cognitive task performance

  • Hit rate declined in low performers (p = 0.011), but not in high performers (p = 0.261)

  • Results revealed an interaction between performance level and hemispheric activation, which suggests stronger right prefrontal activation in high performers in comparison to low performers under high cognitive demand

Read more

Summary

Introduction

Studies on the cognitive neuroscience of aging have reliably revealed age-related differences in brain activation during cognitive task performance (for reviews, see Spreng et al, 2010; Eyler et al, 2011; Grady, 2012; Turner and Spreng, 2012). The first is an age-related reduction in occipitotemporal activation together with an age-related increase in activation of the prefrontal cortex. This has been called the “posterior-anterior shift in aging” (PASA; Grady et al, 1994; Davis et al, 2008). The second is a more bilateral pattern of prefrontal activation in older adults on tasks for which young adults typically show unilateral activation. This pattern has been referred to as Hemispheric Asymmetry Reduction in OLDer adults (HAROLD; Cabeza, 2002). Age-related over-recruitment of the prefrontal cortex has been observed across several cognitive domains such as perception, attention, memory encoding and retrieval, and executive functioning, but most extensively for working memory and inhibitory control tasks (Spreng et al, 2010)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call