Abstract

Abstract. In this study, we focus on the model detection in the Antarctic Peninsula (AP) of so-called perennial firn aquifers (PFAs) that are widespread in Greenland and Svalbard and are formed when surface meltwater percolates into the firn pack in summer, which is then buried by snowfall and does not refreeze during the following winter. We use two snow models, the Institute for Marine and Atmospheric Research Utrecht Firn Densification Model (IMAU-FDM) and SNOWPACK, and force these (partly) with mass and energy fluxes from the Regional Atmospheric Climate MOdel (RACMO2.3p2) to construct a 1979–2016 climatology of AP firn density, temperature, and liquid water content. An evaluation using 75 snow temperature observations at 10 m depth and density profiles from 11 firn cores shows that output of both snow models is sufficiently realistic to warrant further analysis of firn characteristics. The models give comparable results: in 941 model grid points in either model, covering ∼28 000 km2, PFAs existed for at least 1 year in the simulated period, most notably in the western AP. At these locations, surface meltwater production typically exceeds 200 mmw.e.yr-1, with accumulation for most locations >1000mmw.e.yr-1. Most persistent and extensive are PFAs modelled on and around Wilkins Ice Shelf. Here, both meltwater production and accumulation rates are sufficiently high to sustain a PFA on 49 % of the ice shelf area in (up to) 100 % (depending on the model) of the years in the 1979–2016 period. Although this PFA presence is confirmed by recent observations, its extent in the models appears underestimated. Other notable PFA locations are Wordie Ice Shelf, an ice shelf that has almost completely disappeared in recent decades, and the relatively warm north-western side of mountain ranges in Palmer Land, where accumulation rates can be extremely high, and PFAs are formed frequently. PFAs are not necessarily more frequent in areas with the largest melt and accumulation rates, but they do grow larger and retain more meltwater, which could increase the likelihood of ice shelf hydrofracturing. We find that not only the magnitude of melt and accumulation is important but also the timing of precipitation events relative to melt events. Large accumulation events that occur in the months following an above-average summer melt event favour PFA formation in that year. Most PFAs are predicted near the grounding lines of the (former) Prince Gustav, Wilkins, and Wordie ice shelves. This highlights the need to further investigate how PFAs may impact ice shelf disintegration events through the process of hydrofracturing in a similar way as supraglacial lakes do.

Highlights

  • The Antarctic Peninsula (AP) is one of the most rapidly changing regions on Earth

  • The models are forced by realistic atmospheric and surface conditions from the Regional Atmospheric Climate MOdel (RACMO2.3p2) for the period 1979–2016, which has been extensively evaluated with observational datasets, as have previous versions (Van Wessem et al, 2015, 2016, 2018), and includes a snow model that is physically identical to IMAUFDM (Ettema et al, 2010; Ligtenberg et al, 2011)

  • The two snow models are forced with output from the Regional Atmospheric Climate MOdel (RACMO2.3p2) at 5.5 km horizontal resolution to construct a 1979–2016 climatology of AP firn density, temperature, and liquid water content

Read more

Summary

Introduction

The Antarctic Peninsula (AP) is one of the most rapidly changing regions on Earth. In the second half of the 20th century, the lower atmosphere over the AP has warmed up to 3 K, which is among the highest warming rates globally (Bromwich et al, 2012). Liquid meltwater inside the firn can survive winter until the melt season without refreezing These so-called perennial firn aquifers (PFAs) are extensive on the Greenland ice sheet, where they were first discovered by Forster et al (2013). The models are forced by realistic atmospheric and surface conditions from the Regional Atmospheric Climate MOdel (RACMO2.3p2) for the period 1979–2016, which has been extensively evaluated with observational datasets, as have previous versions (Van Wessem et al, 2015, 2016, 2018), and includes a snow model that is physically identical to IMAUFDM (Ettema et al, 2010; Ligtenberg et al, 2011) This combination of models accurately simulates PFA locations in Greenland (Forster et al, 2013; Steger et al, 2017a).

Data and methods
IMAU-FDM
SNOWPACK
Ten-metre firn temperature
Density profiles from Larsen C
Results: model evaluation
Results: model intercomparison
Wilkins Ice Shelf
Wordie Ice Shelf
Palmer Land
Intermodel differences
PFA seasonality
Findings
Ice shelves
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call